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Burned area is a critical input to the algorithms of biomass burning emissions and understanding variability in
fire activity due to climate change but it is difficult to estimate. This study presents a robust algorithm to
reconstruct the patterns in burned areas across Contiguous United States (CONUS) in diurnal, seasonal, and
interannual scales from 2000–2006. Specifically, burned areas in individual fire pixels are empirically
calculated using diurnal variations in instantaneous fire sizes from the Geostationary Operational
Environmental Satellites (GOES) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product.
GOES burned areas exhibit diurnal variability with a temporal scale of half hours. The cumulative burned area
during 9:00–16:00 local solar time accounts for 65%–81% of the total daily burned area. The diurnal variability
is strongest in croplands compared to shrublands, grasslands, savannas, and forests. Analysis on a seasonal
scale indicates that over 56% of burning occurs during summer (June–August). On average, the total annual
burned area during the last seven years is 2.12×104±0.41×104 km2. The algorithm developed in this study can
be applied to obtain burned area from the detections of GOES active fires at near real time, which can greatly
improve the estimates of biomass burning emissions needed for predicting air quality.
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1. Introduction

Wildland fires release a large amount of greenhouse gases and
aerosols into the atmosphere. These emissions have significant impact
on the global carbon cycle and air quality. As a result, a large number of
efforts have focused on the estimates of biomass burning emissions on
regional and global scales using in situ and satellite data (e.g., Duncan
et al., 2003; Ito & Penner, 2004; Lü et al., 2006; Soja et al., 2004;WRAP,
2005a; Wiedinmyer et al., 2006). Currently, these emission estimates
are highly uncertain (±50%) due to uncertainties in input parameters
including burned area (Andreae &Merlet, 2001; Boschetti et al., 2004;
French et al., 2004; Ichoku & Kaufman, 2005; Kasischke et al., 2003).

Several methods have been used to measure burned areas. For
historical analyses, the burned areas fromwildland fires are statistically
derived from the characteristics of potential natural vegetation and
ecological fire regimes (Leenhouts, 1998), and from local and national
fire services or agencies (EPA, 2003; Lü et al., 2006). More recently,
satellite data have been used to detect burned areas at regional scales
(e.g., Fraser & Li, 2002; Pu et al., 2007; Zhang et al., 2003) and global
scales, such asGLOBSCAR fromATSR (Simonet al., 2004), GBA2000 from
SPOT VEGETATION (Tansey et al., 2004), and the MODIS burn scar
product (Roy et al., 2002). Currently, burned areas retrieved from
satellite data are generally available for a specific year at regional or
).
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global scales although MODIS burn scar product will produce contin-
uous data in near future (Roy et al., 2002) and SPOT VEGETATION-based
burned areas from 2000–2007 have been generated (http://www-tem.
jrc.it/Disturbance_by_fire/products/burnt_areas/GlobalBurntAr-
eas2000-2007.htm). In contrast, satellite-based active fire (hotspot)
counts from various satellites provide fire occurrences in near real time
andare available formultipleyears (Justice et al., 2002; Prinset al.,1998).
These fire count-covered areas are used to be a proxy of burned area for
the calculation of biomass burning (e.g., Duncan et al., 2003; Eva &
Lambin, 1998; Wiedinmyer et al., 2006). However, the fire count-
covered areas generally overestimate actual burned areas because
satellite sensors can usually detect fire occurrences inmuch smaller size
(b100 m2) than the pixel in the moderate and coarse resolution data
(Giglio et al., 2003). On the other hand, both the limited instantaneous
observations within a day (twice from AVHRR-18, once from AVHRR-17,
and four times fromTerra plusAquaMODIS) and cloud coveroften result
inmissingdetectionsof temporalfire events. Therefore, thesefire counts
generally capture themajority of large fire events but the corresponding
burned area estimated is of considerable uncertainty (Giglio et al., 2003;
Li et al., 2000). Recent studies show that the burned areas derived from
variousmethods (field inventory, satellite-basedburn scars, and satellite
hotspots) differ from 3 to 10 times in Siberia (Conard et al., 2002), about
two orders of magnitude in global coverage, and 7 times in North
America (Boschetti et al., 2004).

A number of methods have been developed to improve the
estimates of burned areas from satellite-based active fire observations
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(Giglio et al., 2006; Kasischke et al., 2003; Pereira et al., 1999; Scholes
et al., 1996). Burned areas are linearly correlated to fire counts from
AVHRR, ARSR, and MODIS data over a large spatial grid (0.5°–1°) on a
monthly scale (Kasischke et al., 2003; Pereira et al., 1999; Scholes et al.,
1996). Amore sophisticatedmethod,which uses the varied proportion
between burned areas and fire counts and a regression tree algorithm,
is used to estimate global burned area at a 1° spatial resolution from
MODIS active fire counts (Giglio et al., 2006). Certainly, the resultant
burned areas are to some extent improved, but the accuracy in these
estimates still varies greatly with different regions (e.g. Eva & Lambin,
1998; Giglio et al., 2006; Kasischke et al., 2003; Pereira et al., 1999).

Unlike other satellites, National Oceanic and Atmospheric Admin-
istration (NOAA's) Geostationary Operational Environmental Satellite
(GOES) provides high temporal frequency of active fire observations.
From the GOES data, Wildfire Automated Biomass Burning Algorithm
(WF_ABBA) detects subpixel fire sizes every half hour (Prins &Menzel,
1994; Prins et al., 1998). The GOES fire dataset has been demonstrated
to be a potentially powerful tool in estimating smoke aerosol emissions
in near real time for Naval Research Laboratory (NRL) aerosol forecasts
(Prins et al., 1998; Reid et al., 2004). However, to estimate the variation
in biomass burning emissions accurately, the challenge is to minimize
the effects of missed observations of instantaneous fire sizes and to
convert subpixel fire sizes to burned areas. To this end, this study
examines diurnal variability of GOES instantaneous subpixel fire sizes
for a variety of ecosystems across Contiguous United States (CONUS)
and fits the diurnal pattern in fire sizes using a Fourier function. The
fitted model is then applied to empirically simulate burned areas in
each fire event detected from GOES satellite. The simulated burned
areas are evaluated and validated using the burn scars detected from
post-fire Landsat ETM+ (Enhanced Thematic Mapper plus) imagery
and national inventory fire data across CONUS. We further investigate
the spatial and temporal patterns in burned areas at diurnal, seasonal,
and interannual scales from 2000 to 2006.

2. Data

2.1. Instantaneous fire size in GOES WF_ABBA product

TheWF_ABBA derives fire products from the GOES imager every half
hour (Prins & Menzel, 1992; Prins et al., 1998; Weaver et al., 2004). This
algorithm applies Dozier's (1981) bi-spectral method to detect instanta-
neous fire sizes in subpixels using 3.9 µm and 10.7 µm infrared bands
after locating and characterizing hotspot pixels with a nadir spatial
resolution of 4 km (Prins&Menzel,1994). This product contains the time
of fire detection, fire location in latitude and longitude, instantaneous
subpixelfire size, corresponding ecosystem type, andqualityflag (from0
to 5). The ecosystem type in the fire product is based on USGS (US
Fig. 1. Proportions of GOES fire observations in different qualit
Geological Survey) Global Land Cover Characterization (GLCC) dataset
(Brown et al., 1999). The quality flag represents the confidence of fire
detections with six different levels that indicate a fire pixel being pro-
cessed (flag 0 — subpixel instantaneous estimation of fire size and
temperature), saturated (flag 1 — saturated fire pixel), cloud-contami-
nated (flag 2— cloud-contaminated fire pixel), high probability (flag 3—

high probability fire pixel), medium probability (flag 4 — medium
probability fire pixel), and low probability (flag 5 — low probability fire
pixel). To minimize false fires caused by cloud edges, extreme solar
zenith angles, and sensor noise related to uncertainty in radiance de-
tection, interchannel spatial misregistration, geo-location, and Point
Response Function (Cahoon et al., 2000; Giglio & Kendall, 2001; Robin-
son, 1991), theWF_ABBA uses a temporal filter to exclude the fire pixels
that are only detected oncewithin the past 12 h (Schmidt & Prins, 2003).
In this study, we collect the GOES WF_ABBA fire data between January
2000 and December 2006 across CONUS. Note that these fire data are
retrieved from GOES-8 and 12 using ABBA v5.9 for September 2000–
March 2002 and ABBA v6.0 for other periods. ABBA v6.0 is expected to
betterdiscriminate falsedetectionscausedbycloudedge thanABBAv5.9,
but these two versions produce very similar fire detections.

There are twomajor limitations in thefire data fromGOESWF_ABBA.
First, subpixel fire sizes are only calculated in about 38% of the in-
stantaneous fire observationswhich are referred to as the processed fire
pixels (flag 0) (Fig. 1). Among the rest of fire detections without fire size
estimates, there is confidence in about half of thefire observations (flags
1–4) and about half that might be false detects (flag 5) (Fig. 1).

Second, observations of diurnal fires may, to a great extent, be
obstructed by cloud cover and other factors. Clouds often prevent the
sensor from seeing fires and reduce the amount of active fire
observations (Giglio et al., 2003; Prins & Menzel, 1992; Roberts et al.,
2005). Generally, the frequency of cloud occurrence in diurnal patterns
is over 50% in both summer and winter across CONUS (Schreiner et al.,
2001), which is partially responsible for the missed detections of fires,
particularly in the observations of diurnal patterns. Furthermore,
satellite detection of active fire is also impacted by heavy fire smokes,
hot and reflective surfaces, and weakly emitting fire pixels (Roberts et
al., 2005). For example, the Hayman fire in the Front Range of Central
Colorado burned about 550 km2 of area within the fire perimeter in
June 2002, but the instantaneous fires were only continuously
observed in DOY (day of year) 160.

2.2. Burned area

We acquire both high resolution Landsat ETM+ imagery and
ground-based data to train and validate an algorithm that derives
burned areas from GOES ABBA data. First, we obtain areas within fire
perimeters and Landsat ETM+ imagery (30 m) from the Joint NPS
y levels over CONUS based on fire data from 2002–2005.
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(National Park Service)-USGS National Burn Severity Mapping Project
(http://burnseverity.cr.usgs.gov/fire_main.asp). This project also pro-
vides the dates of fire occurrences for the selected fire events. In this
study, we collect burn scars from 20 fire events in 2002 (used for
training algorithm to simulate GOES burned areas) and 14 fire events
during 2003–2005 (used for validation) across CONUS, which are
observed in different land cover types such as forests, savannas,
shrublands, and grasslands. Because there is a certain amount of un-
burned islands within the fire perimeters, we calculate actual burn
scars within the fire perimeters from ETM+ imagery using the Nor-
malized Burn Ratio (NBR). The NBR is first computed as the difference
between near-infrared and middle-infrared reflectance (Key, 2006;
Key & Benson,1999; Epting et al., 2005). It is then used to calculate the
differenced Normalized Burn Ratio (dNBR) by comparing the pre- and
post-fire NBR values. To improve the estimates of burned areas, we
remove unburned islands within the fire perimeters of individual fire
events using dNBR method. For the dataset used in this study, the
unburned areawithin thefire perimeter is about 22.3%±15.1%,which is
found to be independent of the size of burn scar (0.5–1452 km2) and
land ecosystems. If these unburned islands are not excluded, burned
area can be overestimated. Note that ETM+ NBR is one of the best
methods to estimate burned areas, but the accuracymay be affected by
background soil color, re-sprouting from burned plants, blackening or
scorching of trees, and time period of the pre- and post-fire ETM+
imagery (Roy et al., 2006; Van Wagtendonk et al., 2004). Additionally,
burn scars caused by surface fires under dense tree canopy are hard to
detect from ETM+ data.

The second dataset of burned area is obtained from Inter-Regional
Program Office (RPO) 2002 National Wildfire Emission Inventory
(NWEI) (WRAP, 2005a) for comparison with simulated GOES burned
areas in 2002. We use all the NWEI burned area data that are obtained
from fire reports of federal, state, and local agencies. Although this
dataset provides themost accurate in situ burned areas available so far,
there are some limitations. Generally, the burned area reported for a
given fire event represents the total area within the fire's perimeter,
which contains 24%±17% (4–54%) of the acreage without burning
(WRAP, 2005b). Further, this dataset only provides one geo-location for
a fire event instead of a spatial coverage, and the reported locations
could be erroneous (WRAP, 2005a). Particularly, the latitude and
longitude in many prescribed fires are not provided, so that the
centroid coordinates of the county shape are written in the activity
records. Moreover, a number of small fires were not reported. How-
ever, GOES imager is geostationary and is able to detect many of the
fires that are reported in the NWEI (even though reported at county
centroids or too small a wildfire to report or non-reported agricultural
Fig. 2. Diurnal fire sizes (average data from 2002–2005) fitted using the DFT model for vario
croplands, but original data for other ecosystems are not presented here.
burning). Even though there are limitations in NWEI burned areas,
these data covering all CONUS are very useful for comparing and
validating the burned areas calculated from GOES fire data in 2002.

3. Method

Because the burned area is generally proportional to active fire
pixel counts (Giglio et al., 2006; Kasischke et al., 2003; Pereira et al.,
1999), instantaneous fire size detected by GOES imager is assumed to
be a proxy for burned area. Specifically, the area burned is in this
context considered as a function of subpixel fire sizes detected from
GOES WF_ABBA and is simply described as:

A ¼ aF ð1Þ

where A is the area burned within a specified time period (km2), F is
the subpixel fire size (km2), and α is a coefficient of conversion.

To calculate the burned areas using Eq. (1), the fire size and coe-
fficient α are determined as described in the following two sections.

3.1. Determining representatives of diurnal fire sizes

To reconstruct missed fire sizes, we establish representatives of
diurnal fire sizes by examining the GOESWF_ABBA fire product. Diurnal
variation in fire intensity has been used for wildland fire management
(Beck et al., 2001; Finn, 2001) andwidely observed fromvarious satellite
data (Giglio, 2007; Justice et al., 2002; Roberts et al., 2005). The basic
diurnal pattern exhibits high fire intensity during daytimewith a peak at
noonorafternoonwhilefire isweakduringnight. This pattern is strongly
associated with diurnal variations in fire weather conditions (Schroeder
& Buck, 1970), fuel moisture (Rothermel & Mutch, 1986) and fuel tem-
perature (Countryman, 1966). In this study, we select all half-hourly
subpixel fire sizes from GOES fire data (flag 0) between 2002 and 2005,
and stratify them based on ecosystems. The ecosystems are classified
from GLCC ecosystem types into forests, savannas, shrublands, grass-
lands, and croplands. For each ecosystem, the fire sizes in a given half
hour are averaged to generate a diurnal variation. This averaging can
reveal the temporal pattern of variation although the absolute values
may vary for individual fire pixels. The corresponding coordinated uni-
versal time (UTC) of fire occurrence is converted to local solar time (LST).

The averaged fire sizes are fitted using a Fouriermodel to create a set
of representative curves of diurnal patterns for forests, savannas,
shrublands, grasslands, and croplands, respectively. Because the sub-
pixel fire sizemay contain uncertainties caused by background radiance
determination, atmospheric radiance correction, and fire properties
us ecosystems. The asterisks indicate the examples of original data points of fire sizes in

http://burnseverity.cr.usgs.gov/fire_main.asp
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(Giglio & Kendall, 2001; Prins & Menzel, 1994), a suitable curve fitting
should smooth the impact of uncertainties in fire detections without
affecting thefire size behaviors and shouldfill themissedfire sizes (such
as GOES fire flags 1–5 and instantaneous fire undetected in GOES fire
product). Therefore, we fit the diurnal fire sizes using the Discrete
Fourier Transform (DFT) which is decomposed into a set of trigono-
metric forms in the following equation (Briggs & Hensen, 1995):

F tð Þ ¼ a0 þ a1 cos
2kt
N

� �
þ b1 sin

2kt
N

� �
þ a2 cos

4kt
N
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þb2 sin
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N

� �
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N
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þ bk sin
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where F(t) is half-hourly fire size (km2) at time t (hour), N is the number
of samples in the time series, a0 is the mean, a1 and b1 are first-order
trigonometric, a2 and b2 are second-order trigonometric, and so on to
kth order.

The diurnal fire size is well fitted using 4 harmonics of DFT formula
(Fig. 2). The standard deviation between the original data and the
fitted curve is 0.0078, 0.0095, 0.0112, 0.03125, and 0.005 km2 for
forests, savannas, shrubs, grasses, and crops in turn. These values are
much smaller than the diurnal fire sizes, which indicate that the curve
fitting works reasonablywell. The error of the curve fitting is largest in
grasslands where the samples of half-hourly fire sizes are relatively
scattered.

Fire size fitted from GEOS subpixel fire data in various ecosystems
presents a similar diurnal pattern, which is largest around 13:00 LST
(Fig. 2). The half-hourly fire size in shrublands and savannas is
generally larger than 0.2 km2 during 10:00–15:00 LST while it varies
between 0.1 and 0.2 km2 during other hours. The diurnal pattern is
most distinctive in croplands where large fire size dominates in 9:00–
17:00 LST while the value is only about 0.05 km2 in other time periods.
In contrast, the diurnalfire size in forests is relatively stable throughout
a day, which varies slightly around 0.15 km2. These fire sizes arewithin
the reasonable region of GOES ABBA product (Prins et al., 1998).

3.2. Simulating a diurnal curve for an individual fire pixel

Before generating a diurnal curve for a specified fire pixel, geo-
location errors in GOES fire pixels are reduced. Generally, wildfires
burn for several hours extending the fire from a small area in a GOES
pixel to eventually covering the whole pixel (~4 km) because fire
spread rate is about 0.06–0.21 km/h (Loboda & Csiszar, 2007; McRae
et al., 2005). Geo-location shift in GOES instantaneous observations
may place the fire in a nearby GOES pixel. To reduce the geo-location
Fig. 3. Simulating the diurnal pattern of fire sizes from available fire sizes observed in a pixe
ecosystem.
error, we cluster fire observations based on the following criteria. (1) If
fire observations in any two neighbor pixels (a 0.08° buffer, about
10 km) are temporally coincident at any instantaneous observations
within a day, these are treated as separate fire pixels. If they are not
observed at the same time at all within one day, they might belong to
the same fire pixel. Thus they are clustered temporally. Note that this
assumption may not be applicable for very small fires lasting less than
a half hour because GOES imager detects fire every half hour. (2) The
pixel with fewer temporal fire observations is clustered to the pixel
with more temporal observations.

The diurnal curve of fire sizes for a given fire pixel is then gene-
rated by adjusting the corresponding representative diurnal curve.
This processing assumes that the shape of the diurnal curve for a given
pixel in the same ecosystem is similar. Thus, only the shape of the
representative curve is imposed on the detected fire sizes in the given
pixel by adding an offset.

Fs i;j;p;tð Þ ¼ F p;tð Þ þ D i;j;pð Þ ð3Þ

where Fs represents the simulated fire size, F is the representative
diurnal fire sizes from Eq. (2), D is a offset, i and j indicate the location
of the fire pixel, p is the ecosystem type in the related pixel, and t is
time in a half hour.

Theoffset is calculated fromthedetectedGOESfire sizes in apixel and
the representative curve of the related ecosystem. Specifically, the offset
D is calculated using least square method from the available fire sizes
(flag 0) for a fire pixel and the related values from a representative curve
(Fig. 3). For the fire pixels where the number of the processed
instantaneousfire sizes is less than three, the offset is assumed tobe zero.

3.3. Calculating the optimal threshold of fire duration and the conversion
coefficient of burned area

The fire duration in a day is determined for each fire pixel. In a fire
event, large forest fires usually last for several days while some pres-
cribed fires are small and only last for several hours or less. However,
fire duration is difficult to determine directly fromGOESWF_ABBA fire
data accurately because of the gaps associated to the interferences
from cloud cover, smokes, weak fire emitting, and other observation
factors. Thus, the following criteria are applied for this purpose. (1) The
fire pixel is considered a false detect if all the temporal fire ob-
servations are only with low probability (flag 5) and less than three
times within a day. (2) The fire occurrences between the first and last
observations (flags 0–5) are assumed to be continuous because the
GOES fire pixels are very coarse (~4 km). (3) Fires might exist beyond
the time period between the first and last GOES detections. For
l (as an example) located in Hayman fire and the representative diurnal curve in forest



Fig. 4. Hayman fire event (as an example) in June 2002 observed from ETM+ and GOES
imager. (a) Burn scar (black color) in ETM+ band 4 (30m); and (b) hotspots (white color)
in GOES imager band 2 (~4 km). Note that subpixel fire size in a GOES hotspot could be
very small.
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example, GOES imager may delay the detection of fire occurrence
because of the lag that a darkened pixel becomes visually evident
(Weaver et al., 2004). Thus,fires in a pixel are assumed to last forwhole
the day if the confident fire observations (flags 0–4) aremore than four
times around the middle in the local time and observed fire duration
(flags 0–5) is longer than a certain threshold (see the following two
paragraphs). (4) If fire duration is less than the threshold, it is assumed
to be the period between the first and last GOES observations. (5) The
half-hourly fire size is assumed to proportionally represent burned
area as described in Eq. (1) and the cumulative burned areas within a
pixel should be no larger than the GOES pixel size. Criteria 1 and 2 are
Fig. 5. Variation in the RMSE and conversion coefficient α between ETM+ burn scars in 20
determined straightforward based on WF_ABBA fire data. Never-
theless, the threshold of fire duration in criterion 3 and the pro-
portional coefficient α in criterion 5 are complex and statistically
determined as described in the following paragraph.

To calculate the optimal threshold of fire duration to determine
whether the fire within a pixel could last for a day, we compare the
cumulative GOES fire sizes simulated using diurnal representative
curves with the 20 burn scars detected from ETM+ imagery in 2002
(ETM+-based burn scars in 2003–2005 are used for validation). Spe-
cifically, we conduct a set of comparisons with different thresholds
that are set from 1 to 24 h with 1 h interval. According to a given
threshold and 4 criteria described in the above paragraph, we calculate
all the GOES fire sizes from active fire hotspots during the time period
and spatial coverage in a fire event, which are corresponded to the
specified ETM+ burn scar (Fig. 4). Thus, we obtain total GOES fire sizes
in a fire event and compare themwith whole area of ETM+ burn scar.
We then statistically compute a set of α values and root mean square
error (RMSE) between cumulative fire sizes and ETM+ burn scars using
a linear regression method. In this process, parameters A and F in Eq.
(1) are substituted using the ETM+-based burn scar and the GOES
cumulative fire size for each fire event, separately. The optimal α and
threshold of fire duration are obtained when RMSE reaches minimum
and α reaches a constant.

Comparison reveals that RMSE between cumulative GOES fire sizes
and ETM+ burn scars in 2002 decreases while coefficient α increases
with the increase of the threshold of fire duration (Fig. 5). Particularly,
RMSE reaches minimum if the duration threshold is set to 9–14 h.
Correspondingly,α is 1.002 for the time duration threshold ranging from
11–14 h. The simulated half-hourly fire size is equivalent to burned area
under these conditions. Inotherwords, this result suggests that thedaily
burned area could be simulated by cumulating the fire size inwhole the
diurnal curve if fire duration is longer than 14 h otherwise it is only
cumulated from the diurnal period between the first and last fire ob-
servations. Note that the estimates of burned areas do not significantly
improve if the threshold of fire duration is lengthened.

Based on above optimal values of fire duration and conversion
coefficient, the simulated GOES burned areas match the ETM+-based
burn scars very well (Fig. 6). The samples are distributed closely along
a 1:1 line with a correlation slope of 0.92 and R2 of 0.99. In contrast,
the cumulative fire size from the original GOES fire data (without
curve fitting) only accounts for about 21.5% of the total burned areas.
Evidently, the diurnal curve of the simulated fire size greatly improves
the estimates of burned areas.

Using the optimal α and fire-duration threshold, we estimate
burned area for each fire pixel from GOES fire product in 2000–2006.
Then, we investigate the variations in burned areas at various tem-
poral and spatial patterns across CONUS.
02 and cumulative GOES fire sizes with the increase of GOES fire-duration threshold.



Fig. 6. Comparison between the simulated GOES burned areas and ETM+-based burn scars in 2002 (a). The details of burned areas for the small fire events are displayed in (b).

2891X. Zhang, S. Kondragunta / Remote Sensing of Environment 112 (2008) 2886–2897
3.4. Evaluating the simulated GOES burned area

The burned areas simulated from GOES diurnal fire sizes are
validated using two independent datasets. The simulated burned areas
are first compared with the burn scars detected from ETM+ imagery
from 2003–2005. This verifies the capability of GOES fire sizes for the
estimates of burned areas for individual fire events.

The simulated GOES burned areas in 2002 are further compared to
the burned areas fromNWEI in 2002 across CONUS. Because NWEI only
provided a point location with latitude and longitude rather than a
spatial coverage for a fire event, it is hard to match each fire event
betweenGOESobservations andNWEI data. Therefore, the burned areas
are divided into grid cells with a spatial resolution of 0.33° (20 min)
Fig. 7. Comparison of the simulated GOES burned areas with the burn scars detected from ET
2002 (b). The details for the grids with small values of burned areas are displayed in (c). Or
across CONUS to minimize the discrepancy. Furthermore, we also
compare the data in coarser resolution of 0.5° (30min) and 1°,which are
generally used in atmospheric circularmodels. This allows the estimates
of variance of burned areas at different scales for environmentalmodel-
ing and reduces spatial geo-location errors (Boschetti et al., 2006).

4. Results

4.1. Evaluation of algorithm

Evaluations using two independent datasets show that the deve-
loped algorithm is robust in simulating burned areas. The area simula-
ted from GOES fire sizes matches well with burn scars derived from
M+ imagery in 2003–2005(a) and the national inventory data in the grids of 20 min in
iginal fire size indicates the GOES fire size without fitting using diurnal patterns.
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ETM+ imagery during 2003–2005 (Fig. 7a). Particularly, the simulated
burned area is very close to ETM+ burn scar in large fire events.
However, the simulated burned area is relatively poor in some small
fire events that fires are only detected once in the diurnal pattern or no
instantaneous fire sizes are provided in GOES fire product (flags are 1–
5 for all GOES fire detections). Overall, the simulated GOES burned
areas are significantly correlated with ETM+ burn scars (R2=0.82) and
without significant bias (slope=0.99) (Fig. 7a). This suggests that the
burned area simulated fromGOES fire data is a good proxy of burn scar
in a large fire event. It is important to note that more than 80% of the
Fig. 8. Spatial patterns in burned areas (km2) in GOES fire pixels from 2000 to 2006. Note th
burned area is caused by large fires (N20 km2) which are more im-
portant for biomass burning emissions and land cover change (Giglio
et al., 2006; Soja et al., 2007).

The simulated GOES burned area also compares well to the burned
area in NWEI data across CONUS (Fig. 7b). The data pairs reveal that
the simulated GOES burned area accounts for 91%, 91%, and 70% of the
variation in burned areas from NWEI when the resolution of the
matched grid cell is 0.33°, 0.5°, and 1°, respectively. Correspondingly,
the linear regression slope (NWEI data as independent variable) is
0.62, 0.66 and 0.78. The analysis of the total values in the matched
at the size of the dots increases slightly for large burned areas for the display purpose.



Fig. 9. Variations in burned areas for different states across CONUS.
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grids indicates that the simulated GOES burned area is 15% smaller
than that from NWEI. The large burned areas are smaller in simulated
GOES data than those in NWEI. This result suggests that the simulated
GOES burned area is reasonable because NWEI data include a certain
amount of non-burned areas in fire perimeters. In contrast, if the GOES
fire data are not simulated using diurnal patterns, the cumulated fire
sizes in these matched grids are only about 26% of the NWEI burned
areas.

4.2. Spatial pattern in burned areas across CONUS

Fig. 8 presents spatial distributions of annual burned areas over
CONUS from 2000 to 2006. The burned areas reflect that fires generally
occur in thewesternUS, southeasternUS, andalongcentral and southern
Mississippi Valley, whilefire occurrences are limited in northeastern and
southwestern regions. This spatial pattern is likely associated with
climate, ecosystem, and human activity. Because of the relatively dry
climate and dense forests (or shrubs) in the western US (Schoennagel
et al., 2004), burned areas in many individual fire events could be larger
than several GOES pixels. Relatively, burned areas are small in individual
fire events but fire occurrences are highly frequent and densely dis-
tributed along central and southernMississippi Valley, which is typically
related to agriculture activities. Over CONUS, the frequency of fire pixels
for the seven years is 81.9±2.5%, 14.2±2.0%, 2.3±0.5%, and 1.5±0.6% for
the burned areas being b1 km2, 1–5 km2, 5–10 km2, and N10 km2,
respectively.
Fig. 10. Diurnal patterns in the si
Burned areas are distinctively different at state levels (Fig. 9). Gene-
rally, burned areas are large in California and Arizona for all these years,
and Idaho, Montana, Oregon, Colorado, Florida, and Texas in some indi-
vidual years. Annual burned area could be over 3500 km2 in California,
Arizona, and Idaho. On average during the seven years, the top ten states
with large annual burned area (650–2900 km2) in ascending order are
Colorado, Arkansas, Louisiana, Oregon, Florida, Montana, Texas, Idaho,
Arizona, and California, in turn. Certainly, biomass burning contributes
significantly to the air quality in these states and results in high incidences
of poor air quality. Further, the difference in burned areas will help air
quality community to determine the states with possible poor air quality
caused by fires.

4.3. Temporal variability in burned areas

Diurnal pattern in the burned area simulated from GOES fire data
reveals that fires mainly occur during 9:00–16:00 LST across CONUS
(Fig. 10). The corresponding proportion of the burned area is 64.8%,
74.0%, 67.6%, 76.1%, 80.5%, 81.2%, and 74.1% from 2000–2006, res-
pectively. The burned area is larger than 14%/h during 11:00–14:00 LST
where the peaks appear in the diurnal cycles. By contrast, the hourly
value is less than 3% from 17:00 to next 9:00 LST. The strong diurnal
pattern is consistent in all these years regardless of the variation in
total burned area. These resultant diurnal cycles are similar to the
diurnal fire growth and fuel consumption for air quality modeling
(WRAP, 2005a), the strong diurnal variability in biomass burning that
mulated burned areas (%/h).



Fig. 11. Diurnal variability in the simulated burned areas varying with ecosystems.
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is derived from TRMM (Tropical Rainfall Measuring Mission) fire pixel
counts (Giglio, 2007; Justice et al., 2002), and the SEVIRI (Spinning
Enhanced Visible and Infrared Imager) fire radiative power (Roberts
et al., 2005). This kind of fire activity is subject to both human activities
and meteorological conditions (Malingreau, 1990). In herbaceous
vegetation region, fuels are finer and relatively dry quickly, so the
diurnal fire cycle is dictated primarily by human activity (Giglio, 2007).
In forest region, fuel moisture and humidity (ambient humidity) play a
significant role in the diurnal pattern (Beck et al., 2001; Cochrane,
2003; Giglio, 2007). Note that the possible diurnal variations in the
factors (such as clouds) that affect the GOESfire detectionsmaycause a
bias in the diurnal pattern in the simulated burned areas.

Diurnal cycles of burned areas vary with ecosystem types (Fig. 11).
Although the peak of the diurnal cycle occurs consistently for various
ecosystems except for the shrublands in 2005, the areas burned
during peak fire activities (10:00–15:00 LST) account for 52.1%, 61.8%,
66.9%, 62.5%, and 84.9% of daily total areas in forests, savannas,
shrublands, grasslands, and croplands, respectively. During off-peak
time periods, the hourly burned areas are less than 4% in all these
ecosystems. Specifically, they are very limited (b0.5%/h) in croplands
because agricultural fires are strongly controlled by human activities
during daytime. In contrast, the burned areas in forests are relatively
high with a proportion of about 2–4%/h during off-peak time, because
forest fires often burn for several days. The proportion of burned area
in other ecosystems varies between those in croplands and forests.
These results demonstrate that the peak time in the areas of biomass
burning is similar for these ecosystems.

Burned area exhibits a distinctive seasonality (Fig. 12). The largest
monthly burned area could be over 6×103 km2 in 2000, 2002, 2003 and
2006 while it is less than 4×103 km2 in 2001 and 2004. In contrast, the
minimummonthly burned area is less than 160 km2 during these years,
where the smallest value is 71km2 inDecember 2002. The seasonal peak
of biomass burning generally occurs during June–August, which is
supported by AVHRR-based burned areas (Pu et al., 2007). The relative
burned area during summer (June–August) is 70.9%, 55.9%, 78.1%, 68.2%,
64.2%, 67.6%, and 65.3% from 2000 to 2006, respectively. The seasonal



Fig. 12. Seasonal variations in the simulated burned areas. a–g represent the monthly burned areas for different ecosystems from 2000–2006, separately.
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variability is strongest in shrublands and grasslands where the burned
areas in summer are over 76% and 62%, separately, for all the individual
years.However, the burned areas reflect that largefiresmayoccasionally
occur in other individualmonths, such as October in 2001 and 2003 and
September in 2006. In contrast, the seasonality is relatively weaker in
croplands, where the burned areas are large from April to September.
This pattern reflects that agricultural fires could be set during the
Fig. 13. Interannual variations in the simulate
harvesting, post-harvesting, and pre-planting periods across CONUS. It
is due to the fact that the agricultural burning is used for clearing crop
residue, fertilizing the soil, and eliminating insects and disease from the
fields (Chidumayo, 1987; Korontzi et al., 2006).

Interannual variation in burned area is significant. The burned area
is 2.44×104, 1.80×104, 2.38×104, 2.37×104, 1.36×104, 2.10×104, and
2.42×104 km2 from 2000 to 2006, in turn, which is largest in 2000
d burned areas for different ecosystems.



Fig. 14. Interannual variations (coefficient of variation) in burned areas for different states from 2000–2006.
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while smallest in 2004. The total annual burned area experiences no
significant temporal trends and the average is 2.12×104±0.41×
104 km2. At ecosystem levels, the burned area decreases with a rate
of 406 and 117 km2/year for forests and grasslands, increases with
334 km2/year for shrublands, and varies slightly in savannas and
croplands (Fig. 13). Note these values could not be interpreted as long-
term trends because the time period we investigated does not extend
into a decadal scale. The interannual variations are largest in shrub-
lands according to the coefficient of variation (cv=standard deviation/
mean) which is 35%, 19%, 40%, 33% and 21% in forests, savannas,
shrublands, grasslands, and croplands, separately.

Annual burned area also varies considerably at state levels. The
coefficient of variation is larger than 60% in half the states (Fig.14). It is
over 90% in Colorado, and Oregon, while it is less than 30% in Texas,
Oklahoma, Arkansas, and Missouri. Because of the short time period
(seven years) of data used in this study, the temporal trend in the
burned area is generally not significant at 0.05 confident levels.

5. Discussion and conclusions

This study has, for the first time, developed an algorithm to simulate
the burned areas at high temporal and spatial resolution from active
GOES fire data. It demonstrates that the burned areas are equivalent to
half-hourly fire sizes simulated using the diurnal patterns. Evaluation
and validation reveal that the burned areas simulated from GOES fire
data account formore than 82% of the variation in both the ETM+-based
burn scars in individualfire events and thenationalfire inventorydata in
the matched grid cells. Apparently, this algorithm is robust to recon-
struct diurnal burned areas, especially for the large fire events.

Spatially, large burned areas are dominated in the western CONUS
while small values are densely distributed along the central and lower
Mississippi Valley. Diurnal pattern of biomass burning during the seven
years presents local peak burning time varying around 11:00–14:00
across CONUS. The pattern is most distinctive in agricultural regions
because of the impact of human activities and it is relatively weak in
forests where fires generally last for several days. Seasonal variability in
burned area is also remarkable. Biomass burninggenerallyoccursduring
summer, which causes more than 56% of annual burned areas. Contrary
to the consistent patterns in diurnal and seasonal variations, interannual
burned areas vary greatly. The annual burned areas change with a
variation coefficient of 20%–40% in different ecosystems and larger than
90% in some states during past sevenyears. This interannual variation in
burned areas is likely associated with recent climate change and effec-
tive fire suppressions (Schoennagel et al., 2004). The warming climates
and fuel accumulations can induce the increase of burned areas while
the fire suppressions and fuel reductions decrease the burned areas.
However, large forest fires are mainly influenced by climate changes
(Schoennagel et al., 2004).
This algorithm, unlike previous efforts that estimate burned areas
by clustering active fire counts for a large grid cell (e.g., 0.5°) and a long
time period (e.g., monthly), processes each GOES fire pixel individu-
ally and simulates burned areas every half hour. This product has a
potential to contribute to the improvement of the understanding of
greenhouse gases and aerosols released fromwildland fires at various
temporal scales. Particularly, because the burned area is retrieved
from active fire hotspots, this algorithm makes it feasible to estimate
emissions of biomass burning in near real time. This is critical for air
quality forecasting which requires high temporal frequency of bio-
mass burning emissions in near real time.

Finally, it is important to note that this algorithm currently has some
limitations. The accuracy of the simulated burned area is strongly
dependent on the quality of GOES fire size data. Burned area can not be
provided for small fires where fire events are not detected by GOES
imager at all. The geo-location in current GOES fires contains biases
which have strong impacts on the estimates of diurnal patterns of fire
sizes for individual GOES pixels. Moreover, the conversion coefficient
betweenfire size andburnedareamayvarywith the temporal resolution
of fire detections. Therefore, further validation is desired before the
widely use of this burned area data, particularly, the diurnal variation in
burned areas. Finally, fire data quality is expected to be improved with
NOAA's next generation geostationary satellite (GOES-R)which observes
CONUS every 5minwith a spatial resolution of 2 km(Schmit et al., 2005),
and will improve the estimates of the related burned area greatly.
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